
Neil’s Guide to C++
©opyright 2001, 2002 By Neil C. Obremski

Legalities – Please Read!

This is an ongoing rough draft of an eventual book by Neil C. Obremski. All documents
part of this draft should be considered work in progress and as such should be taken
lightly, as it is unfinished and possibly not wholly accurate. By reading this you are
acknowledging that I, Neil C. Obremski, am not liable for any damages incurred by this
material.

All content contained therein is the property of myself, Neil C. Obremski, the copyright
owner, and is under protection by common law copyright. I hereby give all persons the
right to redistribute this draft in an electronic or hardcopy form so long as they are
distributed in whole and not trimmed, maimed, "corrected", or otherwise mutilated in any
way. Any recipients of the distribution must acknowledge Neil C. Obremski as the
author, content creator, and copyright owner. Persons distributing drafts must notify
recipients of these legalities and any new ones that should appear. This is to ensure credit
where credit is due.

Hardcopies must begin with this document (Preface.doc) so that the legalities are easily
visible to readers and recipients.

For the latest draft, information, and current legalities, please visit
http://www.neilstuff.com/ or email webmaster@neilstuff.com .

mailto:webmaster@neilstuff.com
http://www.neilstuff.com/

Preface

Introduction

I've written this book as a strong starting point for programming using the C++ language.
You may reread key sections now and then to refresh your memory or even use it as a
handy reference, but the primary goal is to bust open your brain and stuff the seeds of C+
+ into your consciousness.

It may take you a week to read this, if you finish it, or a year. Mastery of the C++
language does not come from any single source, be it book or tutor. It comes from
experience, experimentation, and mingling with your programming brothers and sisters.
Know ye that I thought to forsake this timeless advice and bound ahead with great strides.
But lo! After starting to learn and use C++ in the fall of 1996 I am still discovering
things. Do not be discouraged; expect neither too little nor too much, but be pleasantly
surprised by both.

References in this genre of programming are plentiful and generally complete, but the
city of building block books is sporadically filled with useful, useless, and flawed
explanations. Authors have sown their work not only with knowledge, but with their
self-same biases, prejudices, hyped enthusiasm, or lack thereof, and coding habits for
good or ill. The blood and brains of scholars is fired and filled by the quirks of people
they have never met in person.

Newbies, I have seen or talked to, wander lost among the maze of boundless and circular
information. Prizes of cheese escape them beyond barriers unbroken, unexplained. I
write this book to bring you to the cheese and send you home happy!

Why Choose C++?

It seems as if every book and tutorial I’ve come across on C++ has its whole history and
a complete section dedicated to explaining it’s superiority, inferiority, and/or it’s purpose.
Evangelists naturally love to talk extensively about subjects dear to their hearts. I only
have one answer to why you should choose C++: your own motivations. Some
possibilities are if you think knowing C++ will help you expand your marketability as a
professional, pass your Computer Science course, write small hobby applications or tools,
or create killer applications. There is no reason for me to provide you with reasons.

About this Book

This book is concentrated on those who wish to learn the C++ language where the
target is first-comers to computers and/or technology, computer operators (PC or

otherwise) with no programming experience, and those with limited experience
looking to expand their horizons. If you are struggling with, intimidated by, or wary of
this subject then I suggest you give this book a go. I do not expect (self-proclaimed)
experts to read this without cringing at the simplistic, ye almost human, explanations of
their closely guarded secrets. I believe in the quality of technical writing as it relates to
the ability to communicate effectively to the reader. That said I try not to assume that
because I think a concept is simple it deserves less of an explanation.

This book is intended as a complete guide to the C++ language, but not a reference
to its standard library, STL, or other common API’s. All of the provided information
has been rigorously researched, reviewed by others, and checked against the latest C++
standard (ISO/IEC 14882, First Edition, 1998-09-01).

This book is written for any decent C++ compiler, even those around before the C++
standard was published. It was a difficult choice to completely favor the current
standard or a broader range of compilers that didn’t necessarily follow the entire standard
for various reasons. Truly all C++ compilers will eventually support the standard, but
where does that leave free, unattended compilers like TC-Lite which were built before
then? I’ve attempted to strike a bargain between the two in that my examples use the old-
style headers, but I also mention the new-style, the differences, and how to modify my
examples to strictly conform to the standard.1

Although the language guide is complete, not all situations and complexities may be
covered because of the near limitless possibilities. The answer to a question involving
a variant situation, however, may be a simple extension of things written about in this
book. If you have a specific question that doesn’t seem to be answered here visit
http://www.neilstuff.com/ for assistance in finding the answer.

I do not provide inline notes for differences between C++ and other languages. If
you are coming from a different programming language, you should recognize some
things and be unfamiliar with others. But regardless you will see the differences
yourselves. I do, however, use the English language as part of many analogies. I basic
grasp of that will help you understand them, but isn’t required.

My opinions, when I choose to disclose them, are clearly marked throughout the
book. I’ve tried to keep them separate from the body text. Every one has their own
opinions and I don’t want my personal ones interfering with your learning. You can
choose to skip them if you wish. Concepts that I find silly or disgusting may or may not
be marked. Please do not assume that everything I teach you in this book I particularly
like or dislike. This book is for learning the language, not my personal preferences.

Part one of this book introduces the reader to computers, programming, and related
concepts. Each chapter in this part reveals some more detail about a specific thing,

1 Personally, I think changing the names of all the headers just to move all the standard functionality into
the ‘std’ namespace was inane and just created confusion. Why shouldn’t the standard functionality exist
globally?

http://www.neilstuff.com/

except for the first which is a broad overview. This should be a starting point for
beginners and a helpful read for other novices. If you consider yourself a god of
computers then you may skip this section with my blessing.

The second part of the book is a guide to the language of C++ separated into
chapters. Each chapter contains a group of related concepts and following chapters will
typically build on the previous topics covered. Ideally you will be able to refer to
chapters afterwards as refreshers and tutorials to questions on the concepts covered.

Lastly, the book is capped with an extensive glossary of terms and advanced
concepts, which is meant to be read by individual topic. If you have an idea of where
you want to and what you want to learn after this language, this should help you get
started. It clears up the basic questions misconceptions of common fields of study such
as multimedia (graphics, audio, etc.), game programming, and other popular API’s (STL,
Win32, etc.).

Rules to Reading

1. Be Patient

C++ is a massive concept. Many people will never wrap their mind around the
entire language and for many more it will take years. Do not let this discourage
you! A house can be built of brick, board, or even bones … but it does not have
to use all of them! Such is the case with this language. You should expect results
based on your desire to conquer this topic and how deep into it you want to go. If
you only want to dabble a bit and only succeed in finishing the first few chapters,
consider it a success rather than a failure.

2. Accept Text

If you are looking to be whizzed immediately off your eye balls and into a world
drowned in high performance multimedia please come down off your cloud. My
way of teaching C++ is from the beginning, so you’ll start with numbers and text
in a plain monochrome format. Even the most extraordinary things have roots in
simplicity.

3. Question Everything

I whole-heartedly welcome questions, comments, and criticisms on this work. It
is an accumulation of all that I have learned and wish to share with my fellow
people. If you have something to add, then by all means let me know so I might
expand my knowledge further.

Notes

 My approach to teaching the C++ language is skewed from most authors and
verily, even teachers. I’ve always felt that beginners are thrown head long into
the strangest mess of technical bramble with the way things usually flow. If you
like the way most C++ books are laid out and it makes sense to you, this book
may be a bit of a warped introduction. However, if you find that you can’t seem
to learn C++ regardless of the book you pick up, this one may be uniquely
tasteful. At first I tried reading other C++ books to get an idea of how to write my
own. But now that I am actually writing it, I’m finding I only use other books as
references for specific concepts rather than structure.

 I left ‘easy’ out of the title because it all depends on how well my writing reaches
you. A lot of publications (free or otherwise) make the claim that their content is
“easy” to digest; I’ve never seen any content that was easy for everyone.
Likewise, this book isn’t necessarily for beginners either; some people might
consider themselves as adept and still have trouble consuming this topic.

 The content of chapters will build upon the knowledge of key points in previous
chapters. However, I’ve tried to organize this so you can enter in at any chapter
without having to read the previous ones. That said, there will be no examples
that must be incrementally built through a standard progression of the chapters. I
always hated those programs that just kept getting bigger and bigger each new
chapter and here I am trying to learn the language. I will try to save “real world”
examples for specific times and they may be utilized or skimmed over. What’s
worse than incremental examples? Incremental examples on boring topics (no
more bank programs!).

Table of Contents

This is not intended as a map of things that are already written, but a path of things to
work on or that I already have. It’s a huge task to tackle a book and there’s a lot of stuff
I want to cover. I even keep coming upon things I forgot to mention in earlier chapters
so first I make a change here before going back (just in case I forget). In other words,
this is to keep my in line so I don’t ramble off into complete gibberish or start writing
about things out of there chapter context.

Part 1: Introduction to Computers and Programming
1. Machines: Input/Output, Storage, and Logic

a. Introduction
b. Digital Machines
c. The Three Parts of Computers
d. A Simple Example
e. Input/Output

f. Storage
g. Logic
h. Hardware

2. Logic and Languages
a. Software
b. Operating Systems
c. Languages
d. Machine Language
e. Assembly Language
f. High-Level Languages
g. Compiled Languages
h. Interpreted Languages
i. Methods of Programming

i. Procedural
ii. Object-Oriented

3. Numbering Systems
a. Introduction
b. The Decimal Numbering System
c. Bases Loaded
d. The Imaginary Numbering System (Fivemal)
e. Distinguishing Numbering Systems
f. Converting Between Numbering Systems
g. The Binary Numbering System (base 2)
h. The Hexadecimal Numbering System (base 16)
i. The Dead Numbering System (base 8)

4. Storage
a. Computers Use Binary
b. N-Bit CPU
c. Hexadecimal Saves Us
d. Multiple Byte Data Storage

5. The C++ Language Do I need this chapter? I want to remove it
a. Choosing a Language
b. History of C++

6. Preparation
a. What You Need
b. Text Editor
c. C++ Software
d. Command Console

Part 2: Programming in C++
1. Syntax and Expressions

a. Breaking into the Circle
b. The ‘Hello World’ Program
c. Syntax
d. Lexical Conventions
e. Expressions

f. My Dear Aunt Sally (operator precedence)
g. Outputting Numbers
h. Integers
i. Floating Point
j. Limits
k. White Space
l. Comments

2. Numbers and Values
a. What is a Variable
b. Data Types
c. Declaring a Variable
d. Declaring Multiple Variables
e. Identifiers
f. C++ Keywords
g. Literals
h. Constants
i. Assignment
j. Basic Arithmetic
k. Casting
l. Output
m. Input
n. Increment and Decrement
o. Land Plot Analogy

3. Blocks and Flow
a. Statement Blocks
b. Scope and Nesting
c. Locals
d. Globals
e. Namespaces
f. Flow Control
g. If
h. Relational and Equality
i. Logical Operators
j. Complex Conditions
k. Else
l. Looping
m. While
n. Do-While
o. For
p. Breaking and Continuing

4. References and Pointers
a. Introduction
b. Reference Variables
c. Memory Address
d. Pointers
e. Dereference

f. Pointer Types
g. Void Pointers
h. Null Pointers

5. Structures
a. Introduction
b. Structures
c. Struct
d. Creating Struct Variables
e. Initialize Struct Variables
f. Using Struct Variables
g. References and Structures
h. Pointers and Structures
i. Bit-Fields
j. Unions
k. Structure Padding

6. Functions
a. Introduction
b. Modularization
c. Prototyping and Definition
d. First Example
e. Return
f. Void
g. Correct Main
h. Parameters
i. Passing by Value
j. Passing by Reference
k. Constant Parameters
l. Scope
m. Call Stack

7. Arrays
a. Introduction
b. Array Declaration
c. Looping Subscripts
d. Initializing Arrays
e. Declaring Arrays without Size
f. Copying an Array
g. Arrays in Memory
h. Pointers to Arrays
i. Pointer Arithmetic
j. References to Arrays
k. Constant Arrays
l. Array Function Parameters
m. Passing Arrays to Functions
n. SizeOf Array

8. Strings
a. Text is Character Strings

b. Character Literals
c. ASCII and Assumptions
d. Char
e. Character Functions
f. String Literals and Constants
g. Variable Strings
h. Initializing Strings
i. Pointers to Strings
j. Cin and Strings
k. String Assignment
l. SizeOf String
m. Concatenation
n. Comparing Strings
o. Converting Strings to Numbers
p. Changing String Case
q. Unicode Strings

9. Pre-Processing
a. The “Other” Compiler
b. #include
c. Custom Headers
d. Macros
e. Destroying Macros
f. Flow Control
g. Existence Checking
h. Parenthesis Unnecessary
i. Raising Errors
j. Concise Types

10. Classes and Objects
a. Blobs with Class
b. Simple Declaration and Usage
c. Member Functions
d. Constructors and Destructors
e. Custom Constructors
f. Initializing Member Variables
g. Inheritance
h. Overloading
i. Class Namespaces
j. Static Members
k. Access Modifiers
l. Friends
m. This
n. Structures are Classes

11. Files and I/O
a. Console I/O (cout/cin)
b. Escape Characters
c. File I/O (ofstream/ifstream)

d. Binary Files
e. Reading in a Structure

Part 3: Glossary of Terms and Advanced Concepts

Concept Coverage Plan by Chapter

After writing eleven chapters in part 2 I decided the book was heading into a hole of
sorts. I hadn’t covered my behind enough in the previous chapters. Now that I’ve had
experience in writing this thing, I know better how to do it, but I also realize that I need a
better outline to follow. I keep learning more about concepts that I either didn’t cover
enough or didn’t cover at all. Thus, below is an outline of all the concepts and which
chapters will cover them.

Notes
 The standard does not speak of ‘iostream.h’ and other C++ headers that used to

end with ‘.h’ and now do not.

Concepts needing to be researched:
 mutable and explicit keywords
 the use of ‘asm’ among popular compiles. the standard stays this keyword is

implementation specific (yikes!)

The beginning of each chapter should list the following:
 Requirements
 Objectives
 Concepts covered in detail including keywords, operators, and standard functions

or classes.

Part 1: Introduction to Computer Programming

Chapter 1: Overview of Systems and Concepts

Chapter 2: Numbering Systems

Chapter 3: Digital Storage

Chapter 4: Arithmetic

Chapter 5: Software Programming
 code libraries
 object code
 source code

Chapter 6: Command Consoles

 Unices console commands
 DOS/Windows console commands
 Macintosh console commands

Chapter 7: C++ Software
 Text Editors:

o TextPad
o UltraEdit
o EmEdit

 Syntax Coloring
 Basic operations: open/save
 Compilers:

o TC-Lite
o C++Builder 5.5
o Visual C++
o DJGPP
o MinGW / Dev C++
o Cygwin
o Digital Mars
o OpenWatcom

 Blarg.

Part 2: The C++ Language

Chapter 1: Overview
 Hello World
 Strict C++
 Lexical Conventions
 Syntax
 Operands, Operators, Operations, and Expressions
 Operation notations: infix, prefix, and postfix.
 Operator Precedence (My Dear Aunt Sally)
 Operator Associatively
 LValues and RValues
 Keywords Listing (intro)
 Operators Listing (intro)
 Statements: Semi-Colons
 White Space
 Comments
 Arithmetic

Chapter 2: Identified Numbers

 Variables: Lifetime (Storage Class), Scope, Address, Name. Only the name is
covered in this chapter. Lifetime and Scope are covered in the next chapter and
‘Address’ in the pointers chapter.

 Memory in C++ (organized by bytes which may or may not be 8 bits, but usually
are)

 Implicit and explicit conversions in expressions (a long + an int for example will
yield a long value).

 Consts, Enums
 Casting
 Primitive Data Types
 Declaration, Initialization
 Identifiers
 Literals
 Assignment
 Increment/Decrement
 Output/Input (with cout/cin)
 sizeof()
 register, volatile, and auto storage classes
 scalar types … found this exerpt: “A scalar type is an arithmetic type (i.e. a built-

in integer or floating point type), an enumeration type, a pointer, a pointer to
member, or a const- or volatile-qualified version of one of these types.”

Chapter 3: Flow Control
 Statement Blocks
 Boolean Logic
 Boolean Constants ‘true’ and ‘false’
 Scope
 Nesting
 Lifetime (Storage Class)
 Locals and Globals
 Namespaces
 If Statements
 Relational and Equality Operators
 Logical Operators
 Else
 ElseIf with Else and If (nested if)
 Switch
 While Statement
 Do-While Statement
 For Statement
 Break and Continue
 Goto
 Conditional (Ternary) Operator
 Comma Operator

Chapter 4: Indirect Variables
 References
 Pointers
 Memory Layout and Addresses
 Address Assignment
 Dereferencing
 Pointer Types (char* versus int*, etc.)
 Void Pointers
 NULL

Chapter 5: Aliases and Compounds
 Typedef
 Structures
 Type Scope
 Member Access
 Definition vs Declaration
 References to Structures
 Pointers to Structures
 Structure Padding and Sizeof with Structures
 Bit Fields
 Bit Manipulation: masking, shifting, outside of structs, etc.
 Unions

Chapter 6: Method Delegation
 Functions: Declaration (Prototype) and Definition
 Return
 Using Functions in Expressions / Call Stack
 Void Functions
 Correct Main() and Main() Alterations
 Parameters
 Void Parameter List
 Passing By Value
 Passing By Reference
 Passing By Address
 Constant Parameters
 Const Functions
 Default Parameter Values
 Structs as Parameters
 Function Scope
 Static for Function Locals
 Standard Functions (Standard Library Intro)
 Function Pointers
 Variable Parameter List (Variable Arguments)
 Ambiguities between declaratory and expressions when a statement begins with

‘T(‘. See [stmt.ambig] in C++ Standard for details.

Chapter 7: Arrays
 Arrays: Declaration and Definition
 Subscripts and Indices
 Pointer Arithmetic
 Initialization
 Constant Arrays
 Looping by Index
 Looping by Pointer Arithmetic
 Auto-Size Arrays (array[] = values)
 Copying Arrays
 Arrays in Memory and Pointers to Arrays
 Array Parameters
 Pointer Parameters as Arrays
 References to Arrays (illegal, period)
 SizeOf with Array

Chapter 8: Strings
 Text is Strings
 Character Literals
 Char Variables
 Character Functions
 String Literals and Constants
 Variable Strings
 Initializing Strings
 Pointers to Strings
 Inputting Strings (cin)
 Outputting Strings
 String Assignment
 SizeOf / String Length
 Concatenation
 Comparing Strings
 Strings and Numbers
 Compound Strings
 String Manipulation
 Unicode Strings (wchar_t and ‘C’L)
 Typical String Manipulations: Sub-String, Replace

Chapter 9: Preprocessing
 Preprocessor
 Header Files
 #include
 Custom Headers
 Multiple Source Files
 Macros
 Destroying Macros
 Selection (#if/#ifdef)

 Existence Checking
 Parenthesis Unnecessary
 Raising Errors
 Macro Constants (__LINE__, etc.)
 Concise Types (type aliases using macros)
 Pragma Directive
 Macro Functions: ##macro and #macro
 extern keyword, extern “C”

Chapter 10: Classes
 Classes
 Declaration
 Instances: Objects
 Member Functions
 Constructors and Destructors
 Fundamental Type Constructors (int(), char(), etc.)
 Copy Constructor
 Member Types (nested types)
 Member Scope
 Custom Namespaces and Class Namespaces
 Initializing Member Data in Constructor
 Inheritance
 Overloading
 Static Members
 Access Modifiers: Public, Protected, Private
 Friends
 This Pointer
 Structures Are Classes

Chapter 11: Streaming I/O
 Files
 Opening/Closing
 Reading/Writing Bytes
 Reading Values with ‘>>’
 Writing Values with ‘<<’
 Binary Files/Saving Structs and other native types
 I/O Manipulation

Chapter 12: Memory Management
 Multidimensional Arrays?
 Pointer Pointers
 Arrays of Strings
 new, placement new, nothrow/throw new
 array vs “plain” allocation (non-array)
 placement allocation ~ explicit destructor calls
 delete

 Heap vs Stack
 Memory Leaks
 Creating new Object (primitive type, user-type)
 Creating new Array
 Creating new Array of Arrays
 Clever Casting

Chapter 13: Templates and Overloading
 Template Classes
 Template Functions
 Operator Overloading
 Overloading Casting Operators (to make a string class act like char* for example)

Chapter 14: Inheritance
 Const, volatile, and const volatile member functions.
 Member Function Pointers
 Multiple inheritance … casting a pointer to a base class from a multiply-derived

one
 Static arrays of member function pointers (this will be good!)
 Virtual Functions
 Virtual Functions don’t work in Constructors/Destructors
 Abstract Classes
 Multiple Inheritance
 Casting Base Pointers to Derived Objects with Single and Multiple inheritance

Chapter 15: Exceptions
 try/catch
 terminate(), unexpected(), uncaught_exception()
 Microsoft Visual C++ specifics: __try, __catch, __finally

Chapter 16: Type Information
 limits.h
 C++ and C ways of type information
 typeof
 dynamic_cast

Chapter 17: Miscellaneous Compiler Specifics
 asm keyword
 __cdecl
 __stdcall

Appendices

Appendix A: Standard Library Outline

Appendix B: Glossary of Terms and Concepts
 Localization and Internationalization
 Linked Lists, Stacks, Queues, Binary (B) Trees
 Recursion
 Code Libraries, Libraries, Import Libraries, Static Libraries, Dynamic Libraries
 Callback Functions
 Multi-Threading
 Standard String Type
 Color Text
 Multimedia / Games Programming: Graphics, Sound, Controllers
 COM
 Binary Compatibility (between C programs, etc.)

	Neil’s Guide to C++
	Legalities – Please Read!
	Preface
	Introduction
	Why Choose C++?
	About this Book
	Rules to Reading
	Notes

	Table of Contents
	Part 1: Introduction to Computers and Programming
	Part 2: Programming in C++

	Concept Coverage Plan by Chapter
	Part 1: Introduction to Computer Programming
	Part 2: The C++ Language
	Appendices

